
Poster: Cross Cloud MapReduce: an Uncheatable MapReduce

Yongzhi Wang (student), Jinpeng Wei (faculty) Mudhakar Srivatsa (research scientist)

Florida International University

e-mail: {ywang032, weijp}@cis.fiu.edu

IBM T. J. Watson Research Center

e-mail: msrivats@us.ibm.com

I. INTRODUCTION

MapReduce [1] is becoming a popular data pro-
cessing application on Cloud Environment. However,
security issues make many customers reluctant to move
their critical computation tasks to cloud. For instance,
[2] points out a real security vulnerability that the cloud
service leader Amazon EC2 suffers from: some mem-
bers of EC2 can create and share Amazon Machine Im-
age (AMI) to the EC2 community so that other users
can deploy their server by simply loading an AMI. A
malicious AMI, if widely used, could flood the commu-
nity with hundreds of infected virtual instances. On the
other hand, in MapReduce where jobs are carried out
via the collaboration of a number of computing nodes,
merely one malicious node may render the overall re-
sults useless. In a traditional MapReduce setting where
each node is deployed on the cloud, the integrity of a
computation can be easily compromised and difficult to
detect.

In this work, we propose a new MapReduce Frame-
work, Cross Cloud MapReduce (CCMR), which can be
deployed among a single private cloud and multiple
public clouds. By using the replication, hold-and-test,
verification and credit-based trust management ap-
proaches, CCMR can eliminate malicious compute
nodes and guarantee high computation accuracy while
incurring acceptable overhead.

II. THREAD MODEL AND SYSTEM DESIGN

A. Attacker Model and System Assumption

In our research, we model the attacker as a “power-
ful adversary” that controls malicious nodes in each
public cloud environment. However, the number of ma-
licious nodes is not big enough to overwhelm that of
benign nodes in each cloud. The adversary can be an
insider or external to any cloud, or it can be a distribut-
ed algorithm implemented and deployed among all the
malicious workers. The adversary receives and shares
information collected by the malicious nodes and in-
structs a select subset of malicious nodes to whether or
not cheat the master in order to introduce as many er-
rors as possible to the final result without detection.
For example, if two malicious workers are assigned to
execute the same task, the adversary can instruct them
returning the same wrong result so that simply compar-
ing the result will not detect the error.

Since we only focus on the computation, we assume
that everything except for the malicious nodes is trust-
ed: the private cloud which is deployed on the customer
trusted organization is trusted. Hence, the master and

the verifier deployed on the private cloud are also trust-
ed. Also, we assume the distributed file system for data
storage and the communication network inside and
among the clouds are trusted and not compromised.
Plus, since the worker only report the hash code of task
result to the master, we resort to the commitment-based
protocol [3] to assume the hash code is consistent with
the actual result accepted by the master.

B. System Design

In CCMR, we redefine the architecture of MapRe-
duce: the master and a small number of slave workers
are deployed on the trusted private cloud within the
customer’s organization; and other slave workers are
deployed on multiple public clouds. The workers de-
ployed in the private cloud are called verifiers, since
they are used to verify the results returned by the un-
trusted workers: they arbitrate the inconsistent results if
needed and verify the consistent results in a non-
deterministic manner. The master is responsible for
assigning tasks and checking the consistency of the task
results. The system architecture is shown in Figure 1.

Figure 1: CCMR Architecture

In CCMR, we employ four approaches to assist the
multi-cloud architecture to guarantee the integrity of
computations: replication, hold-and-test, verification
and credit based trust management. The overall process
can be depicted in Figure 2. In Figure 2, cloud A and B
are two clouds randomly picked from all the public
clouds in the CCMR environment. W1 and W2 are two
slave workers randomly selected from cloud A and B
respectively. The “Verify task” step is completed by the
verifier. The other components in the figure, including
the Task Queue Hash code buffer for the worker W1,
are all maintained in the master.

For each task (e.g., task t2), it is first randomly as-
signed to a worker W1 from one cloud A. Then it is
replicated and randomly assigned to another worker W2
from a different cloud B. The result hash code of both

the original and replicated task should be returned to the
master. Instead of scheduling both tasks at the same
time, The master holds the replicated task until the orig-
inal task returns the result. When the master receives the
result hash code of the original task R1 from the first
worker (step 2), it stores R1 in W1’s hash code buffer
and assigns the replicated task to the second worker
(step 3). When the master receives the result hash code
of the replicated task R2, it compares the two values. If
the two hash codes are different, the master will send
the task to the verifier to arbitrate and determine the
malicious node (step 5). We call this approach hold-

and-test. Part III will show the efficacy of this approach
in limiting the impact of collusive nodes. Still, there
exists a small portion of collusions not detected by the
hold-and-test approach. In order to defeat it, consistent
results are randomly verified by the verifier (step 7). If
the verifier generates a different result, the master de-
termines that both workers are malicious. Each worker
that executes one original task and passes the hold-and-
test check will increment its credit (step 6). And the
original task result is buffered in the worker’s storage.
When a worker has accumulated enough credit, which
we call credit threshold, the master will accept all the
results buffered in that worker and reset its credit (step
11). During the whole process, any worker that fails the
“verify task” step will be added to a blacklist (step 8)
and all the tasks whose results were obtained from that
worker will be rescheduled (step 9).

III. SYSTEM ANALYSIS

CCMR has two lines of defense against the attacker.
The multi-cloud architecture raises the bar for the at-
tacker. Since each task is replicated and assigned to two
(or more) workers from different cloud service provid-
ers, successfully breaking in two or multiple public
cloud is already non-trivial challenge for the attacker.
Figuring out the instances corresponding to a specific
MapReduce job in each cloud and compromising them
to construct collusion is even more difficult.

Even if the first line of defense is breached, the sys-
tem design described in Part II.B can still protect the
accuracy of computations. First, since each task is repli-
cated, the naïve malicious worker that does not collude
with others can be easily eliminated. Second, the hold-
and-test approach can efficiently reduce the success rate
of collusion. For each task, the first worker has to return
the result before the replicate task is assigned to the
second worker. Suppose the first worker is controlled
by the adversary, since the assignment of task is ran-
dom, the adversary cannot predict whether the second
worker is also under his control. Since the benign work-
er takes the majority portion, asking the first worker to
return a wrong result under this situation is very likely
to reveal it. Even worse, when a malicious worker re-
ceived a task, it cannot tell whether the task is the origi-
nal or the replicated one if the adversary hasn’t seen this
before: it is possible the original task is assigned to a
benign worker. So the best strategy to evade detection
over a long run is to return correct result. For the mali-
cious workers who try to return incorrect result in a

Figure 2: Data flow of CCMR

hope of not being discovered, the verification and credit
based approach guarantee very low probability of
introducing errors to the final result: malicious workers
who return erroneous results frequently will be caught
before his buffered results are accepted by the master;
Malicious workers who return erroneous results rarely
may introduce some error to the final results, however,
in many applications such as data mining and statistics,
minor errors would not severely undermine the fidelity
of the application.

IV. IMPLEMENTATION AND EXPERIMENTS

Based on the system design, we implement the
CCMR based on the Hadoop MapReduce framework
and deploy it across a local private cloud, 6 extra small
instances of Microsoft Azure and 6 small instances of
Amazon EC2.

We successfully launch several Apache Mahout [4]
application on CCMR: Bayes Classification, Canopy
Clustering, k-means Clustering, Fuzzy k-means Cluster-
ing, and Dirlchlet Process Clustering.

We also measure the error detection efficacy and
overhead under different scenarios and attacker models
by running the Hadoop WordCount Application. In this
experiment, we vary the fraction of malicious workers n
from 0.15 to 0.5, and model different attacker strategies
by changing the cheat ratio of adversary from 0.1 to 1.0.
The experiment result shows that in each scenario, the
probability that the master node accepts an erroneous
result decreases very quickly with the increase of credit
threshold N. When N is set to 9, each experiment con-
figuration will accept 0 errors. Under different configu-
rations, CCMR incurs from 100% to 160% execution
overhead for workers or verifiers, and at most 45% exe-
cution overhead for the verifiers.

REFERENCES

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. InCommunications of the ACM,
51 (1): 107-113, 2008.

[2] “Cloud Security: Amazon’s EC2 serves up 'certified pre-owned'
server images” http://dvlabs.tippingpoint.com/blog/2011/04/11/
cloud-security-amazons-ec2-serves-up-certified-pre-owned-
server-images

[3] Wei Wei, Juan Du, Ting Yu, Xiaohui Gu, “SecureMR: A
Service Integrity Assurance Framework for MapReduce”, in
Proceedings of the 2009 Annual Computer Applications
Conference.

[4] “Apache Mahout”, http://mahout.apache.org/

