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I. INTRODUCTION 

MapReduce [1] is becoming a popular data pro-
cessing application on Cloud Environment. However, 
security issues make many customers reluctant to move 
their critical computation tasks to cloud. For instance, 
[2] points out a real security vulnerability that the cloud 
service leader Amazon EC2 suffers from: some mem-
bers of EC2 can create and share Amazon Machine Im-
age (AMI) to the EC2 community so that other users 
can deploy their server by simply loading an AMI. A 
malicious AMI, if widely used, could flood the commu-
nity with hundreds of infected virtual instances. On the 
other hand, in MapReduce where jobs are carried out 
via the collaboration of a number of computing nodes, 
merely one malicious node may render the overall re-
sults useless. In a traditional MapReduce setting where 
each node is deployed on the cloud, the integrity of a 
computation can be easily compromised and difficult to 
detect.  

In this work, we propose a new MapReduce Frame-
work, Cross Cloud MapReduce (CCMR), which can be 
deployed among a single private cloud and multiple 
public clouds. By using the replication, hold-and-test, 
verification and credit-based trust management ap-
proaches, CCMR can eliminate malicious compute 
nodes and guarantee high computation accuracy while 
incurring acceptable overhead. 

II. THREAD MODEL AND SYSTEM DESIGN 

A. Attacker Model and System Assumption  

In our research, we model the attacker as a “power-
ful adversary” that controls malicious nodes in each 
public cloud environment. However, the number of ma-
licious nodes is not big enough to overwhelm that of 
benign nodes in each cloud. The adversary can be an 
insider or external to any cloud, or it can be a distribut-
ed algorithm implemented and deployed among all the 
malicious workers. The adversary receives and shares 
information collected by the malicious nodes and in-
structs a select subset of malicious nodes to whether or 
not cheat the master in order to introduce as many er-
rors as possible to the final result without detection.  
For example, if two malicious workers are assigned to 
execute the same task, the adversary can instruct them 
returning the same wrong result so that simply compar-
ing the result will not detect the error. 

Since we only focus on the computation, we assume 
that everything except for the malicious nodes is trust-
ed: the private cloud which is deployed on the customer 
trusted organization is trusted. Hence, the master and 

the verifier deployed on the private cloud are also trust-
ed. Also, we assume the distributed file system for data 
storage and the communication network inside and 
among the clouds are trusted and not compromised.  
Plus, since the worker only report the hash code of task 
result to the master, we resort to the commitment-based 
protocol [3] to assume the hash code is consistent with 
the actual result accepted by the master.  

B. System Design 

In CCMR, we redefine the architecture of MapRe-
duce: the master and a small number of slave workers 
are deployed on the trusted private cloud within the 
customer’s organization; and other slave workers are 
deployed on multiple public clouds. The workers de-
ployed in the private cloud are called verifiers, since 
they are used to verify the results returned by the un-
trusted workers: they arbitrate the inconsistent results if 
needed and verify the consistent results in a non-
deterministic manner. The master is responsible for 
assigning tasks and checking the consistency of the task 
results. The system architecture is shown in Figure 1. 

 

Figure 1: CCMR Architecture 

In CCMR, we employ four approaches to assist the 
multi-cloud architecture to guarantee the integrity of 
computations: replication, hold-and-test, verification 
and credit based trust management. The overall process 
can be depicted in Figure 2. In Figure 2, cloud A and B 
are two clouds randomly picked from all the public 
clouds in the CCMR environment. W1 and W2 are two 
slave workers randomly selected from cloud A and B 
respectively. The “Verify task” step is completed by the 
verifier. The other components in the figure, including 
the Task Queue Hash code buffer for the worker W1, 
are all maintained in the master.  

For each task (e.g., task t2), it is first randomly as-
signed to a worker W1 from one cloud A. Then it is 
replicated and randomly assigned to another worker W2 
from a different cloud B. The result hash code of both 



the original and replicated task should be returned to the 
master. Instead of scheduling both tasks at the same 
time, The master holds the replicated task until the orig-
inal task returns the result. When the master receives the 
result hash code of the original task R1 from the first 
worker (step 2), it stores R1 in W1’s hash code buffer 
and assigns the replicated task to the second worker 
(step 3). When the master receives the result hash code 
of the replicated task R2, it compares the two values. If 
the two hash codes are different, the master will send 
the task to the verifier to arbitrate and determine the 
malicious node (step 5). We call this approach hold-

and-test. Part III will show the efficacy of this approach 
in limiting the impact of collusive nodes. Still, there 
exists a small portion of collusions not detected by the 
hold-and-test approach. In order to defeat it, consistent 
results are randomly verified by the verifier (step 7). If 
the verifier generates a different result, the master de-
termines that both workers are malicious. Each worker 
that executes one original task and passes the hold-and-
test check will increment its credit (step 6). And the 
original task result is buffered in the worker’s storage. 
When a worker has accumulated enough credit, which 
we call credit threshold, the master will accept all the 
results buffered in that worker and reset its credit (step 
11). During the whole process, any worker that fails the 
“verify task” step will be added to a blacklist (step 8) 
and all the tasks whose results were obtained from that 
worker will be rescheduled (step 9).  

III. SYSTEM ANALYSIS 

CCMR has two lines of defense against the attacker. 
The multi-cloud architecture raises the bar for the at-
tacker. Since each task is replicated and assigned to two 
(or more) workers from different cloud service provid-
ers, successfully breaking in two or multiple public 
cloud is already non-trivial challenge for the attacker. 
Figuring out the instances corresponding to a specific 
MapReduce job in each cloud and compromising them 
to construct collusion is even more difficult.  

Even if the first line of defense is breached, the sys-
tem design described in Part II.B can still protect the 
accuracy of computations. First, since each task is repli-
cated, the naïve malicious worker that does not collude 
with others can be easily eliminated. Second, the hold-
and-test approach can efficiently reduce the success rate 
of collusion. For each task, the first worker has to return 
the result before the replicate task is assigned to the 
second worker. Suppose the first worker is controlled 
by the adversary, since the assignment of task is ran-
dom, the adversary cannot predict whether the second 
worker is also under his control. Since the benign work-
er takes the majority portion, asking the first worker to 
return a wrong result under this situation is very likely 
to reveal it. Even worse, when a malicious worker re-
ceived a task, it cannot tell whether the task is the origi-
nal or the replicated one if the adversary hasn’t seen this 
before: it is possible the original task is assigned to a 
benign worker. So the best strategy to evade detection 
over a long run is to return correct result. For the mali-
cious workers who try to return incorrect result in a 

 

Figure 2: Data flow of CCMR  

hope of not being discovered, the verification and credit 
based approach guarantee very low probability of 
introducing errors to the final result: malicious workers 
who return erroneous results frequently will be caught 
before his buffered results are accepted by the master; 
Malicious workers who return erroneous results rarely 
may introduce some error to the final results, however, 
in many applications such as data mining and statistics, 
minor errors would not severely undermine the fidelity 
of the application. 

IV. IMPLEMENTATION AND EXPERIMENTS 

Based on the system design, we implement the 
CCMR based on the Hadoop MapReduce framework 
and deploy it across a local private cloud, 6 extra small 
instances of Microsoft Azure and 6 small instances of 
Amazon EC2. 

We successfully launch several Apache Mahout [4] 
application on CCMR: Bayes Classification, Canopy 
Clustering, k-means Clustering, Fuzzy k-means Cluster-
ing, and Dirlchlet Process Clustering.  

We also measure the error detection efficacy and 
overhead under different scenarios and attacker models 
by running the Hadoop WordCount Application. In this 
experiment, we vary the fraction of malicious workers n 
from 0.15 to 0.5, and model different attacker strategies 
by changing the cheat ratio of adversary from 0.1 to 1.0. 
The experiment result shows that in each scenario, the 
probability that the master node accepts an erroneous 
result decreases very quickly with the increase of credit 
threshold N. When N is set to 9, each experiment con-
figuration will accept 0 errors. Under different configu-
rations, CCMR incurs from 100% to 160% execution 
overhead for workers or verifiers, and at most 45% exe-
cution overhead for the verifiers.  
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